|
Publications
by Research Area
The Madhukar Group has published nearly 350 papers,
book chapters, etcetera. Below is a list of selected
publications.
References VII 36 and VII 38 below are amongst the most
highly cited papers in all of semiconductor nanotechnology
and have together garnered over 1700 citations.
I. Nanotemplate-Directed Assembly of Quantum Nanostructures for Quantum Information
Processing
-
J. Zhang, S. Chattaraj, Q. Huang, L. Jordao, S. Lu, and A. Madhukar, "On chip scalable
highly pure and indistinguishable single photon sources in ordered arrays: Path to
Quantum Optical Circuits." Science Advances, 8.35, eabn9252 (2020).
[CLICK HERE]
-
Zhang, J., Chattaraj, S., Lu, S., & Madhukar, A. Highly pure single photon emission from spectrally uniform surface-curvature directed mesa top single quantum dot ordered array. arXiv preprint arXiv:1811.06481. (2018)
[CLICK HERE]
-
Chattaraj, S., Zhang, J., Lu, S., & Madhukar, A. On-Chip Scalable Coupled Single Photon Emitter-All Dielectric Multifunctional Quantum Optical Circuits Working on a Single Collective Mie Resonance. arXiv preprint arXiv:1811.06652. (2018)
[CLICK HERE]
-
Zhang, J., Chattaraj, S., Lu, S., & Madhukar, A. Mesa-top quantum dot single photon emitter arrays: Growth, optical characteristics, and the simulated optical response of integrated dielectric nanoantenna-waveguide systems. Journal of Applied Physics, 120(24), 243103. (2016)
[CLICK HERE]
-
Chattaraj, S., & Madhukar, A. Multifunctional all-dielectric nano-optical systems using collective multipole Mie resonances: toward on-chip integrated nanophotonics. JOSA B, 33(12), 2414-2423. (2016)
[CLICK HERE]
-
Zhang, J., Lu, S., Chattaraj, S., & Madhukar, A. Triggered single photon emission up to 77K from ordered array of surface curvature-directed mesa-top GaAs/InGaAs single quantum dots. Optics express, 24(26), 29955-29962. (2016)
[CLICK HERE]
-
Zhang, J., Lingley, Z., Lu, S., & Madhukar, A. Nanotemplate-directed InGaAs/GaAs single quantum dots: Toward addressable single photon emitter arrays. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 32(2), 02C106. (2014)
[CLICK HERE]
II.
Solar Energy Conversion Exploiting Quantum Dots
and Nanowires
1. Z. Lingley, S. Lu. and A. Madhukar, "A High
Quantum Efficiency Preserving Approach to Ligand Exchange
on Lead Sulfide Quantum Dots and Interdot Resonant Energy
Transfer" Nano Lett., 11, 2887-2891 (2011)
2. S. Lu, Z. Lingley, T. Asano, D. Harris, T. Barwicz,
S. Guha, and A. Madhukar, " Photocurrent Induced
by Nonradiative Energy Transfer from Nanocrystal Quantum
Dots to Adjacent Silicon Nanowire Conducting Channels:
Towards a New Solar Cell Paradigm" Nano Lett.,
9, 4548 (2009)
3. S. Lu and A. Madhukar, "Nonradiative
Resonant Excitation Transfer from Nanocrystal Quantum
Dots to Adjacent Quantum Channels", Nano Lett.,
7, 3443 (2007).
III.
Biophysics, Bioengineering, and Nanomedicine
1. J. K. Lee, S. Lu, and A. Madhukar, "Real-Time
Dynamics of Ca2+, Caspase-3/7, and Morphological Changes
in Retinal Ganglion Cell Apoptosis under Elevated Pressure."
PLoS ONE, 5, e13437 (2010)
2. S. Lu and A. Madhukar, "Cellular prostheses:
functional abiotic nanosystems to proble, manipulate,
and endow functions in live cells." Nanomedicine:
Nanotechnoloty, Biology, and Medicine, 6, 409-418 (2010)
3. S. Lu, A. Bansal, W. Soussou,
T. W. Berger, and A. Madhukar, Receptor-ligand based
specific cell adhesion on solid surfaces: hippocampal
neuronal cells on bilinker functionalized glass, Nano
Lett. 6, 1977 (2006).
IV.
Nanocrystal-Substrate Hybrid Integrated Nanostructures
1.
A. Madhukar, S. Lu, A. Konkar, Y. Zhang, M. Ho, S. Hughes,
and A. P. Alivisatos, "Integrated Semiconductor
Nanocrystal and Epitaxical Nanostructure Systems: Structural
and Optical Behavior," Nano Lett. 5, 479 (2005).
2. A. Konkar, S. Lu, A. Madhukar, S. M. Hughes, and
A. P. Alivisatos, "Semiconductor nanocrystal quantum
dots on single crystal semiconductor substrates: High
resolution transmission electron microscopy," Nano
Lett. 5, 969 (2005).
V.
Nanocrystal Manipulation on Surfaces
1.
S. Meltzer, R. Resch, B. E. Koel, M. E. Thompson, A.
Madhukar, A. A. G. Requicha, and P. Will, "Fabrication
of Nanostructures by Hydroxylamine Seeding of Gold Nanoparticle
Templates", Langmuir, 17, 1713 (2001).
2. R. Resch, S. Meltzer, T. Vallant, H. Hoffman, B.
E. Koel, A. Madhukar, A. A. G. Requicha, and P. Will,
"Immobilizing Au nanoparticles on SiO2 surfaces
using octadecylsiloxane monolayers", Langmuir,
17, 5666 (2001).
3. R. Resch, D. Lewis, S. Meltzer, N. Montoya, B.E.
Koel, A. Madhukar, A.A.G. Requicha, and P. Will, "Manipulation
of gold nanoparticles in liquid environments using scanning
force microscopy", Ultramicroscopy, 82, 135 (2000)
4. R. Resch, C. Baur, A. Bugacov, B.E. Koel, P. M. Echternach,
A. Madhukar, N. Montoya A.A.G. Requicha, and P. Will
"Linking and manipulation of gold and multinanoparticle
structures using dithiols and scanning force microscopy",
J. Phys. Chem. B103, 3647 (1999).
5. T.R. Ramachandran, C. Baur, A. Bugacov, A. Madhukar,
B. E. Koel, A. A. A. Requicha, and C. Gazen, "Direct
and controlled manipulation of nanometer - sized particles
using non-contact atomic force microscope", Nanotechnology,
9, 237 (1998).
VI.
Electronic and Optoelectronic Devices
1. T. Asano, C. Hu, Y. Zhang, M. Liu, J.C. Campbell,
and A. Madhukar, "Design Consideration and Demonstration
of Resonant-Cavity-Enhanced Quantum Dot Infrared Photodetectors
in Mid-Infrared Wavelength Regime (3-5 micron)."
IEEE J. of Quantum Electronics, 46, 1484 (2010)
2. T. Asano, Z. Fang, and A. Madhukar, "Deep levels
in GaAs(001)/InAs/InGaAs/GaAs self-assembled quantum
dot structures and their effect of quantum dot devides."
J. of Applied Physics, 107, 073111 (2010)
3. T. Asano, A. Madhukar, K. Mahalingham, G.J. Brown,
"Dark current and band profiles in low defect density
thick multilayered GaAs/InAs self-assembled quantum
dot structures fro infrared detectors" J. Appl.
Phys, 104, 113115 (2008)
4 . E. T. Kim, A. Madhukar, Z.
Ye, and J. C. Campbell, "High detectivity InAs
quantum dot infrared photodetectors," Appl. Phys.
Lett. 84, 3277 (2004).
5. A. Madhukar and J. C. Campbell, "Quantum dot
infrared photodetectors," Semiconductor Nanostructures
for Optoelectronic Applications, Ed. T. Steiner, Artech
House, Inc. (Norwood, MA), Chapter 3, (2004).
6. Z. Ye, J. C. Campbell, Z. H. Chen, E. T. Kim, and
A. Madhukar,"Noise and photoconductive gain in
InAs quantum dot infrared photodetectors", App.
Phys. Lett. 83, 1234? (2003)
7. E. T. Kim, Z. H. Chen, M. Ho, and A. Madhukar, Tailoring
mid- and long-wavelength dual response of InAs quantum-dot
infrared photodetectors using InxGa1-xAs capping layers,
J. Vac. Sci. Technol. B 20, 1188 (2002).
8. Z. Ye, J. C. Campbell, Z. H. Chen, E. T. Kim, and
A. Madhukar, Voltage-controllable multi-wavelength InAs
quantum-dot infrared photodetectors for mid- and far-infrared
detection, J. Appl. Phys. 92, 4141 (2002).
9. Z. Ye, J. C. Campbell, Z. Chen, E. T. Kim, and A.
Madhukar, Normal-incidence InAs self-assembled quantum-dot
infrared photodetectors with a high detectivity, IEEE
J. Quantum Electr. 38, 1234? (2002).
10. Q. Xie, A. Kalburge, P. Chen, and A. Madhukar, "Observation
of lasing from vertically self-organized InAs three-dimensional
island quantum boxes on GaAs(001)," IEEE Photonic
Tech. Lett. 8, 965 (1996).
11. K. Kaviani, A. Madhukar, J. J. Brown, and L. E.
Larson, "Realization of doped-channel MISFETs with
high breakdown voltage in AlGaAs/InGaAs based material
system," Electron. Lett. 30, 669 (1994).
12. K. Kaviani, K. Z. Hu, Q. H. Xie, and A. Madhukar,
"Realization of high performance doped channel
MISFETs in highly strained AlGaAs/InGaAs/AlGaAs based
quantum wells," J. of Cryst. Growth 127, 68 (1993).
13. K. Z. Hu, L. Chen, K. Kaviani, P. Chen, and A. Madhukar,
"All optical photonic switches using integrated
inverted asymmetric Fabry-Perot modulators and heterojunction
phototransistors," IEEE Photonic Tech. L. 4, 263
(1992).
14. L. Chen, K. H. Hu, R. M. Kapre, and A. Madhukar,
"High contrast ratio self electro-optic devices
based on inverted InGaAs/GaAs asymmetric Fabry-Perot
modulator," Appl. Phys. Lett. 60, 422 (1992).
15. L. Chen, K. Z. Hu, R. M. Kapre, W. Chen, and A.
Madhukar, "High contrast optically bistable optoelectronic
switches based on InGaAs/GaAs(100) conventional and
inverted asymmetric Fabry-Perot modulators grown via
molecular beam epitaxy," J. Vac. Sci. Technol.
B 10, 1014 (1992).
16. R. M. Kapre, A. Madhukar, and S. Guha, "Highly
strained GaAs/InGaAs/AlAs resonant tunneling diodes
with simultaneously high peak current densities and
peak-to-valley ratios at room temperature," Appl.
Phys. Lett. 58, 2255 (1991).
17. L. Chen, R. M. Kapre, K. Z. Hu, and A. Madhukar,
"High contrast optically bistable optoelectronic
switch based on InGaAs/GaAs(100) asymmetric Fabry-Perot
modulator, detector, and resonant tunneling diode,"
Appl. Phys. Lett. 59,1523 (1991).
18. K. Z. Hu, L. Chen, A. Madhukar, P. Chen, C. Kyriakakis,
Z. Karim, and A. R. Tanguay, Jr., "Inverted cavity
GaAs/InGaAs asymmetric Fabry-Perot reflection modulator,"
Appl. Phys. Lett. 59, 1664 (1991).
19. N. M. Cho, P. G. Newman, D. J. Kim, A. Madhukar,
D. D. Smith, T. Aucoin, and G. J. Iafrate, "Realization
of high mobility in inverted AlxGa1-xAs/GaAs heterojunctions",
App. Phys. Lett. 52, 2037 (1988).
VII.
Highly Strained Epitaxy: Coherent Islands & Stress
Engineered Quantum Dots
1. M. A. Makeev and A. Madhukar, "Stress relaxation
in lattice-mismatched semiconductor overlayers on patterned
substrates: atomistic simulation studies," Handbook
of Semiconductor Nanostructures and Nanodevices, Eds.
A. A. Balandin and K. L. Wang, Am. Scientific Publishers,
Vol. X, Chapter 7, (2006).
2. M. A. Makeev and A. Madhukar, "Calculation of
vertical correlation probablility in GeSi(001) shallow
island quantum dot multilayer systems," Nano Lett.
6, 1279, (2006).
3. M. A. Makeev, R. K. Kalia, A. Nakano, P. Vashishta,
and A. Madhukar, "Effect of geometry on stress
relaxation in InAs/GaAs rectangular nanomesas: Multimillion-atom
molecular dynamics simulations," J. Appl. Phys.
98, 114313, (2005).
4. M. A. Makeev, W. Yu, and A. Madhukar, "Atomic
scale stresses and strains in Ge/Si(001) nanopixels:
An atomistic simulation study," J. Appl. Phys.
96, 4429 (2004).
5. M. A. Makeev and A. Madhukar, "Stress and strain
fields from an array of spherical inclusions in semi-infinite
elastic media: Ge nanoinclusions in Si," Phys.
Rev. B 67, 073201 (2003).
6. M. A. Makeev, W. Yu, and A. Madhukar, "Stress
distributions and energetics in the laterally ordered
systems of buried pyramidal Ge/Si(001) islands: An atomistic
simulation study," Phys. Rev. B 68, 195301 (2003).
7. X. Su, R. K. Kalia, A. Nakano, P. Vashishta, and
A. Madhukar, "InAs/GaAs square nanomesas: Multimillion-atom
molecular dynamics simulations on parallel computers,"
J. Appl. Phys. 94, 6762 (2003).
8. E.T. Kim, Z. Chen, and A. Madhukar, Selective manipulation
of InAs quantum dot electronic states using a lateral
potential confinement layer, Appl. Phys. Lett. 81, 3473
(2002).
9. A. Madhukar, "Stress Engineered Quantum dots:
Nature's Way", in "Nano Optoelctronics: Concepts,
Physics, and Devices", Ed. M. Grundmann, Springer-Verlag,
(Berlin, 2002).
10. M. Makeev and A. Madhukar, "Large-scale atomistic
simulations of atomic displacements, stresses, and strains
in nanoscale mesas: Effect of mesa edges, corners, and
interfaces," Appl. Phys. Lett. 81, 3789 (2002).
11. M. A. Makeev and A. Madhukar, "Simulations
of atomic level stresses in systems of buried Ge/Si
islands", Phys. Rev. Lett. 86, 5542 (2001).
12. I. G. Rosen, T. Parent, C. Cooper, P. Chen, and
A. Madhukar, "A neural network based approach to
determining a robust process recipe for the plasma enhanced
deposition of silicon nitride thin films," IEEE
T. Contr. Syst. T. 9, 271 (2001).
13. B. Fidan, I. G. Rosen, T. Parent, J. Tie, and A.
Madhukar, "Multivariable intelligent control of
CF4/O2 plasma etching of silicon nitride," Proceedings
of 2001 American Control Conference, Arlington, VA,
July 25-27, 2, 1280 (2001).
14. X. T. Su, R. K. Kalia, A. Nakano, P. Vashishta,
and A. Madhukar, "Million-atom molecular dynamics
simulation of flat InAs overlayers with self-limiting
thickness on GaAs square nanomesas," Appl. Phys.
Lett. 78, 3717 (2001).
15. X. T. Su, R. K. Kalia, A. Nakano, P. Vashishta,
and A. Madhukar, "Critical lateral size for stress
domain formation in InAs/GaAs square nanomesas: A multimillion-atom
molecular dynamics study," Appl. Phys. Lett. 79,
4577 (2001).
16. E. T. Kim, Z. H. Chen, and A. Madhukar, Tailoring
detection bands of InAs quantum-dot infrared photo-detectors
using InxGa1-xAs strain-relieving quantum wells, Appl.
Phys. Lett. 79, 3341 (2001).
17. A. Omeltchenko, M. E. Bachlechner, A. Nakano, R.
K. Kalia, P. Vashishta, I. Ebbsjö, A. Madhukar,
and P. Messina, "Stress domains in Si(111)/a-Si3N4
nanopixel: ten-million-atom molecular dynamics simulations
on parallel computers," Phys. Rev. Lett. 84, 318
(2000).
18. M. E. Bachlechner, A. Omeltchenko, A. Nakano, R.
K. Kalia, P. Vashishta, I. Ebbsjö, and A. Madhukar,
"Dislocation emission at the silicon/silicon nitride
interface: a million atom molecular dynamics simulation
on parallel computers," Phys. Rev. Lett. 84, 322
(2000).
19. A. Nakano, M. E. Bachlechner, P. Branicio, T. J.
Campbell, I. Ebbsjö, R. K. Kalia, A. Madhukar,
S. Ogata, A. Omeltchenko, J. P. Rino, F. Shimojo, P.
Walsh, and P. Vashishta, "Large-scale atomistic
modeling of nanoelectronic structures," IEEE T.
Electron. Dev. 47, 1804 (2000).
20. X. Su, R. K. Kalia, A. Madhukar, A. Nakano, and
P. Vashishta, "Multimillion atom simulation of
atomic-level surface stresses on InAs/GaAs nanomesas,"
Proc. of MRS Symposium, Fall 1999, 548, 269 (2000).
21. I. Mukhametzhanov, Z. Wei, R. Heitz, and A. Madhukar,
Punctuated island growth: an approach to examination
and control of quantum dot density, size, and shape
evolution, Appl. Phys. Lett. 75, 85 (1999).
22. R. Heitz, I. Mukhametzhanov, O. Stier, A. Madhukar,
and D. Bimberg, "Enhanced polar exciton- LO-phonon
interaction in quantum dots ", Phys. Rev. Lett.,
83, 4654 (1999).
23. A. Nakano, M. Bachlechner, T. Campbell, R. Kalia,
A. Omeltchenko, K. Tsuruta, P. Vashishta, S. Ogata,
I. Ebbsjo, A. Madhukar, "Atomistic Simulation of
Nanostructured Materials Using Parallel Multiresolution
Algorithms", IEEE Computational Science & Engineering,
5, 68 (1998).
24. I. Mukhametzhanov, R. Heitz, J. Zeng, P. Chen, and
A. Madhukar, Independent manipulation of density and
size of stress-driven self assembled quantum dots, Appl.
Phys. Lett. 73, 1841 (1998).
25. R. Heitz, I. Mukhametzhanov, P. Chen, and A. Madhukar,
Excitation transfer in self-organized asymmetric quantum-dot
pairs, Phys. Rev. B 58, R10151 (1998).
26. A. Konkar, R. Heitz, T.R. Ramachandran, P. Chen,
and A. Madhukar, "Fabrication of strained InAs
island ensembles on nonplanar patterned GaAs (001) substrates"
J. Vac. Sci. Technol. B 16, 3 (1998);
27. A. Konkar, A. Madhukar, and P. Chen, " Stress-engineered
spatially selective self-assembly of strained InAs quantum
dots on nonplanar patterned GaAs(001) substrates "
App. Phys. Lett., 72, 220 (1998)
28. A. Madhukar, T. R. Ramachandran, A. Konkar, I. Mukhametzhanov,
W. Yu, and P. Chen, "On the atomistic and kinetic
nature of strained epitaxy and formation of coherent
3D island quantum boxes," Appl. Surf. Sci.123/124,
266 (1998).
29. R. Heitz, T.R. Ramachandran, A. Kalburge, Q. Xie,
I. Mukhametzhanov, P. Chen and A. Madhukar, "Observation
of re-entrant 2D to 3D morphology transition in highly
strained epitaxy: InAs on GaAs", Phys. Rev. Lett.
78, 4071 (1997).
30. W. Yu and A. Madhukar, "Molecular dynamics
study of coherent island energetics, stresses, and strains
in highly strained epitaxy", Phys. Rev. Lett. 79,
905 (1997).
31. N. P. Kobayashi, T. R. Ramachandran, P. Chen, and
A. Madhukar, "In-situ, atomic force microscope
studies of the evolution of InAs three-dimensional islands
on GaAs(001)," Appl. Phys. Lett. 68, 3299 (1996).
32. A. Madhukar, "A unified atomistic and kinetic
framework for growth front morphology evolution and
defect initiation in strained epitaxy," J. Cryst.
Growth 163, 149 (1996).
33. W. B. Yu and A. Madhukar, "Molecular dynamics
studies of surface stress in (2 x N) Gen/Si(001),"
Proceedings of the 23rd Int. Conf. on the Physics of
Semiconductors, (Berlin, Germany, 1996) Eds. M. Scheffler
and R. Zimmermann, World Scientific, Singapore, 971
(1996).
34. W. Yu and A. Madhukar, "Molecular dynamics
studies of the stress distribution in strained semiconductor
nanostructures," Proceedings of the 23rd Int. Conf.
on the Physics of Semiconductors, (Berlin, Germany,
1996), Eds. M. Scheffler and R. Zimmermann, World Scientific,
Singapore, 1309 (1996).
35. A. Madhukar, " Semiconductor Nanostructures:
Nature's Way ", in " Low dimensional systems
prepared by epitaxial growth or regrowth on patterned
substrates" NATO ASI Proceedings, Eds. K. Eberl,
P. Demeester, and P. Petroff, (Kluwer Scientific, The
Netherlands, 1995), p. 19-33.
36. Q. Xie, A. Madhukar, P. Chen, N. Kobayashi, "Vertically
Self-Organized InAs quantum box islands on GaAs(100)",
Phys. Rev. Lett. 75, 2542 (1995) HIGHLY
CITED
37. A. Madhukar, Q. Xie, P. Chen, and A. Konkar, "Nature
of strained InAs 3-dimensional island formation and
distribution on GaAs(100)," Appl. Phys. Lett. 64,
2727 (1994).
38. S. Guha, A. Madhukar, and K.C. Rajkumar, "Onset
of incoherency and defect introduction in the initial
stages of molecular beam epitaxical growth of highly
strained InxGa1-xAs on GaAs(100), Appl. Phys. Lett.
57, 2110 (1990) HIGHLY
CITED
39. S. J. Sun, Y. C. Chang, and A. Madhukar, "Effects
of geometry and strain on the electronic properties
of InAs/GaAs self-assembled quantum dots," Phys.
Rev. B (To be published).
40. M. A. Makeev, R. K. Kalia, A. Nakano, P. Vashishta,
and A. Madhukar, "Stress field from a pyramidal
InAs island in GaAs: Multimillion-atom molecular dynamics
simulation study," Phys. Rev. B (Submitted).
VIII.
Lattice-Matched Growth on Patterned Substrates:
Engineered Stress Induced
Assembly of Nanostructures (ESIAN)
1. A. Madhukar, K. C. Rajkumar, and P. Chen, "In-situ
approach to realization of three-dimensionally confined
structures via substrate encoded size reducing epitaxy
on nonplanar patterned substrates," Appl. Phys.
Lett. 62, 1547 (1993).
2. K. C. Rajkumar, K. Kaviani, P. Chen, A. Madhukar,
K. Rammohan, and D. H. Rich, "One step in-situ
quantum dots via molecular beam epitaxy," J. Cryst.
Growth 127, 863 (1993).
3. S. Guha and A. Madhukar, "An explanation for
the directionality of interfacet migration during molecular
beam epitaxical growth on patterned substrates,"
J. Appl. Phys. 73, 8662 (1993).
4. K. C. Rajkumar, A. Madhukar, K. Rammohan, D. H. Rich,
P. Chen, and L. Chen, "Optically active 3-dimensionally
confined structures realized via molecular beam epitaxical
growth on nonplanar GaAs(111)B," Appl. Phys. Lett.
63, 2905 (1993).
5. A. Madhukar, "Growth of semiconductor heterostructures
on patterned substrates: defect reduction and nanostructure
synthesis," Thin Solid Films 231, 8 (1993)
6. S. Guha, A. Madhukar, K. Kaviani, L. Chen, R. Kuchibhotla,
R. Kapre, M. Hyugaji and S. Xie, "Molecular beam
epitaxical growth of AlxGa1-xAs on non-planar patterned
GaAs (001)," Proceedings of the MRS Symposium on
III-V Heterostructures for Electronic/Photonic Devices,
145, 27 (1989).
IX.
Strained Epitaxy: Defect Reduction via Growth on
Patterned Substrates
1. S. Guha, A. Madhukar, and Li Chen, "Defect reduction
in strained InxGa1-xAs via growth on GaAs(100) substrates
patterned to submicron dimensions," Appl. Phys.
Letts. 56, 2304 (1990).
2. S. Guha, A. Madhukar, L. Chen, K. C. Rajkumar, and
R. Kapre, "Interfacet migration and defect formation
in heteroepitaxy on patterned substrates: AlGaAs and
InGaAs on GaAs(100) in MBE," SPIE Proceedings on
Growth of Semiconductor Structures and High TC Superconductors,
Ed. A. Madhukar, Thin Films on Semiconductors, 1285,
160 (1990).
3. R. Kapre, A. Madhukar, and S. Guha, "In0.25Ga0.75As/AlAs
based resonant tunneling diodes grown on pre patterned
and non patterned GaAs(100) substrates," IEEE Electr.
Device L. 11, 270 (1990).
4. A. Madhukar, K. C. Rajkumar, L. Chen, S. Guha, K.
Kaviani, and R. Kapre, "Realization of low defect
density, ultra thick, strained InGaAs/GaAs multiple
quantum well structures via growth on patterned GaAs(100)
substrates," App. Phys. Letts. 57, 2007 (1990).
5. S. Guha, A. Madhukar, K. Kaviani, and R. Kapre, "Growth
of InxGa1-xAs on patterned GaAs(100) substrates,"
J. Vac. Sci. Technol. B 8, 149 (1990).
X.
Molecular Beam Epitaxy, Growth Kinetics, Surface
Chemical Reactions, & Long Range Order in Alloys
1. R. Viswanathan, A. Madhukar, and S. B. Ogale, "Role
of step orientation and step-step interaction in the
in-situ creation of laterally confined semiconductor
nanostructures via growth: a simulated annealing study
on a parallel computing platform," J. Cryst. Growth
150, 190 (1995).
2. A. Madhukar, W. Yu, R. Viswanathan, and P. Chen,
"Some computer simulations of semiconductor thin
film growth and strain relaxation in a unified atomistic
and kinetic model," MRS Symposium Proc. 408, 413
(1995).
3. S. B. Ogale and A. Madhukar, "Adatom processes
near step edges and evolution of long range order in
semiconductor alloys grown from vapor phase," Appl.
Phys. Lett. 60, 2095 (1992).
4. R. Viswanathan, J. Seshadri, S. Joshi, S. B. Ogale,
V. C. Bhavsar, and A. Madhukar, "Molecular dynamics
simulation of semiconductor surfaces on a transputer
array-a performance analysis," Extended Abstract,
Supercomputing Symposium (June 3-5, 1991, Canada), (1991).
5. S. B. Ogale and A. Madhukar, "Surface relaxation
controlled mechanism for occurrence of long range ordering
in III-V semiconductor alloys grown by molecular beam
epitaxy," Appl. Phys. Lett. 59, 1356 (1991).
6. R. Viswanathan, S. Thube, S. B. Ogale, V. C. Bhavsar,
and A. Madhukar, "Parallel implementations of simulated
annealing for semiconductor surface relaxations on multi-transputer
systems," Frontiers in Parallel Computing, Eds.
V. Bhatkar, A. Basu, S. C. Purohit, and K. M. Rege,
Narosa Publishing House, India, 311 (1990).
7. S. V. Ghaisas and A. Madhukar, "Nature of the
oscillatory surface smoothness and its consequences
during molecular beam epitaxy of strained layers: a
computer simulation study," J. Appl. Phys. 65,
1888 (1989).
8. S. V. Ghaisas and A. Madhukar, "Surface kinetics
and growth interruption in molecular beam epitaxy of
compound semiconductors: a computer simulation study,"
J. Appl. Phys. 65, 3872 (1989).
9. S. V. Ghaisas and A. Madhukar, "Kinetic aspects
of growth front surface morphology and defect formation
during molecular beam epitaxy growth of strained thin
films," J. Vac. Sci. Technol. B 7, 264 (1989).
10. S. B. Ogale and A. Madhukar, "Low energy ion
beam effects on the molecular beam expitaxical growth
of III-V compound semiconductors: a Monte Carlo simulation
study," Appl. Phys. Lett. 55, 1115 (1989).
11. A. Madhukar and S. V. Ghaisas, "The nature
of molecular beam epitaxial growth examined via computer
simulations," CRC Critical Reviews in Solid State
and Materials Sciences 14, 1 (1988).
12. S. V. Ghaisas and A. Madhukar, "Computer simulations
of the role of surface reconstruction, stoichiometry
and strain in molecular beam epitaxical growth,"
Proceedings of the SPIE Symposium on Growth of Advanced
Semiconductor Structures, Ed. A. Madhukar, 944, 16 (1988).
13. S. V. Ghaisas and A. Madhukar, "Influence of
compressive and tensile strain on growth mode during
epitaxical growth: a computer simulation study,"
App. Phys. Lett. 53, 1599 (1988).
14. M. Thomsen and A. Madhukar, "Computer simulations
of the role of group V molecular reactions at steps
during the molecular beam epitaxial growth of III-V
semiconductors," J. Cryst. Growth 80, 275 (1987).
15. M. Thomsen, S. V. Ghaisas, and A. Madhukar, "Examination
of the nature of lattice matched III-V semiconductor
interfaces using computer simulated molecular beam epitaxial
growth; I. AC/BC interfaces," J. Cryst. Growth
84, 79 (1987).
16. M. Thomsen and A. Madhukar, "Examination of
the nature of lattice matched III-V semiconductor interfaces
using computer simulated molecular beam epitaxial growth
AxB1-xC/BC interfaces, " J. Cryst. Growth 84, 98
(1987).
17. S. B. Ogale, M. Thomsen, and A. Madhukar, "Role
of surface reconstruction and external ion beam in the
growth kinetics of III-V molecular beam epitaxy,"
Proceedings of MRS Spring Symposium, 94, 83 (1987).
18. M. Y. Yen, A. Madhukar, B. F. Lewis, R. Fernandez,
L. Eng, and F. J. Grunthaner, "Cross-sectional
transmission electron microscope studies of GaAs/InAs(100)
strain layer modulated structures grown by molecular
beam epitaxy," Surf. Science 174, 606 (1986).
19. P. Chen, A. Madhukar, J. Y. Kim, and T. C. Lee,
"Existence of metastable step density distributions
on GaAs(100) surfaces and their consequences for molecular
beam epitaxial growth," Appl. Phys. Lett. 48, 650
(1986).
20. F. Voillot, A. Madhukar, J. Y. Kim, P. Chen, N.
M. Cho, W. C. Tang, and P. G. Newman, "Observation
of kinetically controlled monolayer step height distribution
at normal and inverted interfaces in ultrathin GaAs/AlxGa1-xAs
quantum wells," Appl. Phys. Lett. 48, 1009 (1986).
21. B. F Lewis, R. F. Fernandez, A. Madhukar, and F.
J. Grunthaner, "Arsenic-induced intensity oscillations
in reflection high-energy electron diffraction measurements,"
J. Vac. Sci. Technol. B 4, 560 (1986).
22. S. V. Ghaisas and A. Madhukar, "Role of surface
molecular reactions in influencing the growth mechanism
and the nature of non-equilibrium surfaces: a Monte-Carlo
study of molecular beam epitaxy," Phys. Rev. Lett.
56, 1066 (1986).
23. M. Y. Yen, T. C. Lee, P. Chen, and A. Madhukar,
"Kinetics of the formation of normal and inverted
molecular beam epitaxial interfaces: a reflection high-energy
electron diffraction dynamics study of GaAs/AlxGa1-xAs(100)
multiple quantum wells," J. Vac. Sci. Technol.
B 4, 590 (1986).
24. T. C. Lee, M. Y. Yen, P. Chen, and A. Madhukar,
"Kinetic processes in molecular beam epitaxy of
GaAs(100) and AlAs(100) examined via static and dynamic
behaviour of RHEED intensities," J. Vac. Sci. Tech.
A 4, 884 (1986).
25. P. Chen, J. Y. Kim, A. Madhukar, and N. M. Cho,
"Optimal surface and growth front of III-V semiconductors
in MBE: a study of kinetic processes via RHEED specular
beam intensity measurement on GaAs(100)," J. Vac.
Sci. Tech. B 4, 890 (1986).
26. T. C. Lee, M. Y. Yen, P. Chen, and A. Madhukar,
"The temporal behavior of RHEED intensity and implications
for growth kinetics during MBE growth of GaAs/AlxGa1-xAs(100)
modulated structures," Surf. Science 174, 55 (1986).
27. F. J. Grunthaner, M. Y. Yen, A. Madhukar, R. Fernandez,
T. C. Lee, and B. F. Lewis, "Molecular beam epitaxial
growth of GaAs/InAs multiple interface structures,"
App. Phys. Letts. 46, 983 (1985).
28. S. V. Ghaisas and A. Madhukar, "Monte-Carlo
simulations of MBE growth of III-V semiconductors: the
growth kinetics, mechanisms and consequences for the
dynamics of RHEED intensity," J. Vac. Sc. Tech.
B3, 540 (1985).
29. A. Madhukar and S. V. Ghaisas, "Implications
of the configuration-dependent-reactive-incorporation
growth process for the group V pressure and substrate
temperature dependence of III-V molecular beam epitaxial
growth and the dynamics of the reflection high energy
electron diffraction intensity," Appl. Phys. Letts.
47, 247 (1985).
30. A. Madhukar, T. C. Lee, M. Y. Yen, P. Chen, J. Y.
Kim, S. V. Ghaisas, and P. G. Newman, "Role of
surface kinetics and interrupted growth during molecular
beam epitaxial growth of normal and inverted GaAs/AlGaAs(100)
interfaces: a reflection high energy electron diffraction
intensity dynamics study," Appl. Phys. Lett. 46,
1148 (1985).
31. B. F. Lewis, F. J. Grunthaner, A. Madhukar, T. C.
Lee, and R. Fernandez, "RHEED intensity behaviour
during MBE growth of GaAs(100) and implications for
growth kinetics and mechanisms," J. Vac. Sci. Tech.
B3, 1317 (1985).
32. B. F. Lewis, T. C. Lee, F. J. Grunthaner, A. Madhukar,
R. Fernandez, and J. Maserjian, "RHEED oscillation
studies of kinetics and lattice mismatch strain-induced
effects during InGaAs growth on GaAs(100)," J.
Vac. Sci. Tech. B2, 419 (1984).
33. A. Madhukar, "Far from equilibrium vapor phase
growth of lattice matched III-V compound semiconductor
interfaces: some basic concepts and Monte-Carlo computer
simulations," Surface Science 132, 344 (1983).
34. J. Singh and A. Madhukar, "Prediction of a
kinetically controlled surface roughening: a Monte-Carlo
computer simulation study," Phys. Rev. Lett. 51,
794 (1983).
35. J. Singh and A. Madhukar, "Surface orientation
dependent surface kinetics and interface roughening
in molecular beam epitaxial growth of III-V semiconductors:
a Monte-Carlo study," J. Vac. Sci. Tech. B 1, 305
(1983).
XI.
Disordered Systems (Low Dimensional and Interfacial)
1. J. Singh and A. Madhukar, "A derivation for
the energy dependence of the density of band tail states
in disordered materials," Solid State Comm. 41,
241 (1982).
2. J. Singh and A. Madhukar, "A new method for
calculating non-ideal point defect induced electronic
structure: applications to GaAs1-xPx:O," Solid
State Commun. 41, 947 (1982).
3. J. Singh and A. Madhukar, "Method for calculating
electronic structure induced by short ranged defects
in semiconductors," Phys. Rev. B 25, 7700 (1982).
4. J. Singh and A. Madhukar, "The origin and nature
of Si band gap states at the Si/SiO2 interface,"
App. Phys. Lett. 38, 884 (1981).
5. J. Singh and A. Madhukar, "Origin of U-shaped
background density of interface states at non lattice
matched semiconductor interfaces," J. Vac. Sci.
Technol. 19, 437 (1981).
6. F. J. Grunthaner, P. J. Grunthaner, R. P. Vasquez,
B. F. Lewis, J. Maserjian, and A. Madhukar, "High
resolution XPS as a probe of local atomic structure:
application to amorphous SiO2 and the Si/SiO2 interface,"
Phys. Rev. Lett. 43, 1683 (1979). HIGHLY
CITED
7. A. Madhukar and M. H. Cohen, "Ideal resistivity
in one dimension," Phys. Rev. Lett. 38, 85 (1977).
8. A. Madhukar and W. Post, "Exact solution for
the diffusion of a particle in a medium with site diagonal
and off-diagonal dynamic disorder," Phys. Rev.
Lett. 39, 1424 (1977).
XII.
Two Dimensional Systems
XII.A Electron Transport, Electron-Phonon
Interaction, Coupled Plasmons
1. S. B. Ogale, A. Madhukar,
and N. M. Cho, "Influence of transverse electric
field on the photoluminescence linewidth of excitonic
transition in quantum wells: alloy disorder and composition
fluctuation contributions," J. Appl. Phys. 62,
1381 (1987).
2. S. B. Ogale, A. Madhukar, F. Voillot, M. Thomsen,
W. C. Tang, T. C. Lee, J. Y. Kim, and P. Chen, "Atomistic
nature of heterointerfaces in III-V semiconductor-based
quantum-well structures and its consequences for photoluminescence
behavior," Phys. Rev. B 36, 1662 (1987).
3. A. Madhukar, P. D. Lao, W. C. Tang, M. Aidan, and
F. Voillot, "Observation of phonon modes through
resonant mixing with electronic states in the secondary
emission spectra of GaAs/Al0.32Ga0.68As single quantum
well," Phys. Rev. Lett. 59, 1313 (1987).
4. S. B. Ogale and A. Madhukar, "Quantum size effect
in the transport of electrons in semiconductor quantum
well structures," J. App. Phys. 55, 483 (1984).
5. S. B. Ogale and A. Madhukar, "Alloy disorder
scattering contribution to low temperature electron
mobility in semiconductor quantum well structures,"
J. App. Phys. 56, 368 (1984).
6. M. Grabowski and A. Madhukar, "Theory of the
transverse static magnetoconductivity in a two-dimensional
electron-phonon system," Solid State Commun. 41,
29 (1982).
7. M. Grabowski and A. Madhukar, "Quantum theory
of magnetotransport in two dimensional systems with
electron-impurity, electron-phonon and electron-electron
interactions," Surf. Sc. 113, 273 (1982).
8. B. Horovitz, M. Grabowski, and A. Madhukar, "A
theory of cyclotron resonance in a two dimensional quantum
Wigner crystal," Surf. Sc. 113, 318 (1982).
9. S. Das Sarma and A. Madhukar, "Collective modes
of spatially separated, two-component, two-dimensional
plasma in solids," Phys. Rev. B 23, 805 (1981).
10. S. Das Sarma and A. Madhukar, "Formation of
an anomalous acoustic plasmon in spatially separated
charged plasmas," Surf. Sci. 98, 563 (1980).
11. S. Das Sarma and A. Madhukar, "Study of the
electron-phonon interactions and magneto-optical anomalies
in two dimensionally confined systems," Phys. Rev.
B 22, 2823 (1980).
12. N. V. Dandekar, A. Madhukar, and D. N. Lowy, "Study
of the electronic structure of model (110) surfaces
and interfaces of semi-infinite III-V compound semiconductors:
the GaSb/InAs system," Phys. Rev. B 21, 5687 (1980).
13. A. Madhukar and S. Das Sarma, "Intrinsic and
extrinsic interface states at the lattice matched interfaces
between III-V compound semiconductors: the InAs/GaSb
(110) system," J. Vac. Sci. Technol. 17, 1120 (1980).
14. A. Madhukar and S. Das Sarma, "Electron-phonon
coupling and resonant magneto-phonon effect in optical
behavior of two-dimensionally confined charge carriers,"
Surf. Sci. 98, 135 (1980).
15. B. Horowitz and A. Madhukar, "Electron-phonon
interaction and cyclotron resonance in two dimensional
electron gas," Solid State Commun. 32, 695 (1979).
XII.B
Electronic Structure
1. J. Y. Kim and A. Madhukar, "Electronic structure
of GaP/AlP (100) superlattices," J. Vac. Sci. Tech.
21, 528 (1982).
2. A. Madhukar and J. Delgado, "The electronic
structure of Si/GaP (110) interface and superlattices,"
Solid State Commun. 37, 199 (1981).
3. S. Das Sarma and A. Madhukar, "Cation and anion
ideal vacancy induced neutral deep levels in III-V compound
semiconductors," Solid State Comm. 38, 183 (1981).
4. S. Das Sarma and A. Madhukar, "Study of the
ideal-vacancy-induced neutral deep levels in III-V compound
semiconductors and their ternary alloys," Phys.
Rev. B 24, 2051 (1981).
5. S. Das Sarma and A. Madhukar, "Ideal vacancy
induced band gap levels in lattice matched thin superlattices:
the GaAs/AlAs (100) and InAs/GaSb (100) systems",
J. Vac. Sci. Technol. 19, 447 (1981).
6. N. V. Dandekar, A. Madhukar, and D. N. Lowy, "Study
of the electronic structure of model (110) surfaces
and interfaces of semi-infinite III-V compound semiconductors:
the GaSb/InAs system," Phys. Rev. B 21, 5687 (1980).
7. R. N. Nucho and A. Madhukar, "Electronic structure
of SiO2 -quartz and the influence of local disorder,"
Phys. Rev. B 21, 1576 (1980).
8. A. Madhukar and R. N. Nucho, "The electronic
structure of InAs/GaSb(001) superlattices: two dimensional
effects," Solid State Commun. 32, 331 (1979).
9. N. V. Dandekar, A. Madhukar, and D. N. Lowy, "Electronic
structure of semi-infinite III-V compound semiconductor
surfaces and interfaces: application to InAs/GaSb(110),"
J. Vac. Sci. Technol. 16, 1364 (1979).
10. D. N. Lowy and A. Madhukar, "Study of the interface
electronic structure of a model metal-semiconductor
interface," Phys. Rev. B 17, 3832 (1978).
11. R. N. Nucho and A. Madhukar, "Tight binding
study of the electronic structure of the InAs/GaSb(001)
superlattice," J. Vac. Sci. Technol. 15, 1530 (1978).
12. R. N. Nucho and A. Madhukar, "Electronic structure
of -quartz and the influence of some local disorder:
a tight binding study," Proceedings of the International
Topical Conference on the Physics of SiO2 and its Interfaces
(March 1978), Ed. S. T. Pantelides, Pergamon Press,
60 (1978).
XIII.
Transport in One Dimension (Organic conductors,
Molecular Solids)
1.
M. Ratner and A. Madhukar, "The role of nuclear
motion in electron and excitation transfer rates,"
Chemical Physics 30, 201 (1978)
2. A. Madhukar and M. H. Cohen, "Ideal resistivity
in one dimension," Phys. Rev. Lett. 38, 85 (1977).
149. A. Madhukar and W. Post, "Exact solution for
the diffusion of a particle in a medium with site diagonal
and off-diagonal dynamic disorder," Phys. Rev.
Lett. 39, 1424 (1977).
3. A. Madhukar, "Theory of Peierls instability
in quasi one-dimensional solids," Solid State Commun.
15, 921 (1974).
4. A. Madhukar, "Dimerisation and charge ordering
in linear chain organic conductors," Chem. Phys.
Lett. 27, 606 (1974).
XIV.
Surface Science
1. M. Thomsen and A. Madhukar,
"Classical description of laser-induced desorption
rates," Phys. Rev. B II-35, 8131 (1987).
2. A. Madhukar, "Bonding on solid surfaces and
the existence of Pauling-type functional relationships,"
Bull. Am. Phys. Soc. 21, 304 (1976).
3. B. Bell and A. Madhukar, "Theory of chemisorption
on metallic surfaces: role of intra-adsorbate Coulomb
correlations and surface structure," Phys. Rev.
B 14, 4281 (1976).
4. A. Madhukar, "Chemisorption bonding and bond
lengths on transition metal surfaces: effect of coordination
and valency saturation," Solid State Commun. 16,
461 (1975).
5. A. Madhukar and B. Bell, "Chemisorption on transition
metal surfaces: screening and polarization versus the
intra-adsorbate Coulomb interaction," Phys. Rev.
Lett. 34, 1631 (1975).
6. A. Madhukar, "Chemisorption on transition metal
surfaces: electronic structure," Phys. Rev. B 8,
4458 (1973).
XV. Magnetism
1. A. Madhukar and R. Hasegawa, "Mechanism for
resistivity minimum in amorphous ferromagnets,"
Solid State Commun. 14, 61 (1974).
2. A. Madhukar, "Indirect exchange mechanism of
magnetic ordering in amorphous alloys," Journal
de Physique, Tome 35, C4-295 (1974).
3. A. Madhukar and R. Hasegawa, "Resistivity minimum
in amorphous ferromagnets," Journal de Physique,
Tome 35, C4-291 (1974).
4. A. Madhukar, "Theory of s-d exchange interaction
in dilute magnetic alloys: formalism," Phys. Rev.
B 7, 1116 (1973).
5. A. Madhukar, "Magnetic ordering versus lattice
distortion in very narrow bands," Solid State Commun.
13, 1767 (1973).
|