| 
                      
                           
                        Publications 
                          by Research Area 
                          
                        The Madhukar Group has published nearly 350 papers, 
                          book chapters, etcetera. Below is a list of selected 
                          publications. 
                          References VII 36 and VII 38 below are amongst the most 
                          highly cited papers in all of semiconductor nanotechnology 
                          and have together garnered over 1700 citations.  
                         
                          
                        I. Nanotemplate-Directed Assembly of Quantum Nanostructures for Quantum Information 
                          Processing 
                          
                          
                            - 
                              J. Zhang, S. Chattaraj, Q. Huang, L. Jordao, S. Lu, and A. Madhukar, "On chip scalable
                              highly pure and indistinguishable single photon sources in ordered arrays: Path to 
                              Quantum Optical Circuits." Science Advances, 8.35, eabn9252 (2020).
            [CLICK HERE]
                            
 
                            - 
                              Zhang, J., Chattaraj, S., Lu, S., & Madhukar, A.  Highly pure single photon emission from spectrally uniform surface-curvature directed mesa top single quantum dot ordered array. arXiv preprint arXiv:1811.06481. (2018)
            [CLICK HERE]
                            
 
                            - 
                              Chattaraj, S., Zhang, J., Lu, S., & Madhukar, A.  On-Chip Scalable Coupled Single Photon Emitter-All Dielectric Multifunctional Quantum Optical Circuits Working on a Single Collective Mie Resonance. arXiv preprint arXiv:1811.06652. (2018)
            [CLICK HERE]
                            
 
                            - 
                              Zhang, J., Chattaraj, S., Lu, S., & Madhukar, A.  Mesa-top quantum dot single photon emitter arrays: Growth, optical characteristics, and the simulated optical response of integrated dielectric nanoantenna-waveguide systems. Journal of Applied Physics, 120(24), 243103. (2016)
            [CLICK HERE]
                            
 
                            - 
                              Chattaraj, S., & Madhukar, A.  Multifunctional all-dielectric nano-optical systems using collective multipole Mie resonances: toward on-chip integrated nanophotonics. JOSA B, 33(12), 2414-2423. (2016)
            [CLICK HERE]
                            
 
                            - 
                              Zhang, J., Lu, S., Chattaraj, S., & Madhukar, A.  Triggered single photon emission up to 77K from ordered array of surface curvature-directed mesa-top GaAs/InGaAs single quantum dots. Optics express, 24(26), 29955-29962. (2016)
            [CLICK HERE]
                            
 
                            - 
                              Zhang, J., Lingley, Z., Lu, S., & Madhukar, A.  Nanotemplate-directed InGaAs/GaAs single quantum dots: Toward addressable single photon emitter arrays. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 32(2), 02C106. (2014)
            [CLICK HERE]
                            
 
                           
                         
                          
                        II. 
                          Solar Energy Conversion Exploiting Quantum Dots 
                          and Nanowires 
                        1. Z. Lingley, S. Lu. and A. Madhukar, "A High 
                          Quantum Efficiency Preserving Approach to Ligand Exchange 
                          on Lead Sulfide Quantum Dots and Interdot Resonant Energy 
                          Transfer" Nano Lett., 11, 2887-2891 (2011) 
                        2. S. Lu, Z. Lingley, T. Asano, D. Harris, T. Barwicz, 
                          S. Guha, and A. Madhukar, " Photocurrent Induced 
                          by Nonradiative Energy Transfer from Nanocrystal Quantum 
                          Dots to Adjacent Silicon Nanowire Conducting Channels: 
                          Towards a New Solar Cell Paradigm" Nano Lett., 
                          9, 4548 (2009)  
                        3. S. Lu and A. Madhukar, "Nonradiative 
                          Resonant Excitation Transfer from Nanocrystal Quantum 
                          Dots to Adjacent Quantum Channels", Nano Lett., 
                          7, 3443 (2007). 
                        III. 
                          Biophysics, Bioengineering, and Nanomedicine 
                        1. J. K. Lee, S. Lu, and A. Madhukar, "Real-Time 
                          Dynamics of Ca2+, Caspase-3/7, and Morphological Changes 
                          in Retinal Ganglion Cell Apoptosis under Elevated Pressure." 
                          PLoS ONE, 5, e13437 (2010) 
                        2. S. Lu and A. Madhukar, "Cellular prostheses: 
                          functional abiotic nanosystems to proble, manipulate, 
                          and endow functions in live cells." Nanomedicine: 
                          Nanotechnoloty, Biology, and Medicine, 6, 409-418 (2010) 
                        3. S. Lu, A. Bansal, W. Soussou, 
                          T. W. Berger, and A. Madhukar, Receptor-ligand based 
                          specific cell adhesion on solid surfaces: hippocampal 
                          neuronal cells on bilinker functionalized glass, Nano 
                          Lett. 6, 1977 (2006). 
                        IV. 
                          Nanocrystal-Substrate Hybrid Integrated Nanostructures 
                           
                        1. 
                          A. Madhukar, S. Lu, A. Konkar, Y. Zhang, M. Ho, S. Hughes, 
                          and A. P. Alivisatos, "Integrated Semiconductor 
                          Nanocrystal and Epitaxical Nanostructure Systems: Structural 
                          and Optical Behavior," Nano Lett. 5, 479 (2005).
  
                          2. A. Konkar, S. Lu, A. Madhukar, S. M. Hughes, and 
                          A. P. Alivisatos, "Semiconductor nanocrystal quantum 
                          dots on single crystal semiconductor substrates: High 
                          resolution transmission electron microscopy," Nano 
                          Lett. 5, 969 (2005). 
                          
                        V. 
                          Nanocrystal Manipulation on Surfaces 
                        1. 
                          S. Meltzer, R. Resch, B. E. Koel, M. E. Thompson, A. 
                          Madhukar, A. A. G. Requicha, and P. Will, "Fabrication 
                          of Nanostructures by Hydroxylamine Seeding of Gold Nanoparticle 
                          Templates", Langmuir, 17, 1713 (2001). 
                          2. R. Resch, S. Meltzer, T. Vallant, H. Hoffman, B. 
                          E. Koel, A. Madhukar, A. A. G. Requicha, and P. Will, 
                          "Immobilizing Au nanoparticles on SiO2 surfaces 
                          using octadecylsiloxane monolayers", Langmuir, 
                          17, 5666 (2001). 
                          3. R. Resch, D. Lewis, S. Meltzer, N. Montoya, B.E. 
                          Koel, A. Madhukar, A.A.G. Requicha, and P. Will, "Manipulation 
                          of gold nanoparticles in liquid environments using scanning 
                          force microscopy", Ultramicroscopy, 82, 135 (2000) 
                          4. R. Resch, C. Baur, A. Bugacov, B.E. Koel, P. M. Echternach, 
                          A. Madhukar, N. Montoya A.A.G. Requicha, and P. Will 
                          "Linking and manipulation of gold and multinanoparticle 
                          structures using dithiols and scanning force microscopy", 
                          J. Phys. Chem. B103, 3647 (1999).  
                          5. T.R. Ramachandran, C. Baur, A. Bugacov, A. Madhukar, 
                          B. E. Koel, A. A. A. Requicha, and C. Gazen, "Direct 
                          and controlled manipulation of nanometer - sized particles 
                          using non-contact atomic force microscope", Nanotechnology, 
                          9, 237 (1998).  
                         
                          VI. 
                          Electronic and Optoelectronic Devices 
                        1. T. Asano, C. Hu, Y. Zhang, M. Liu, J.C. Campbell, 
                          and A. Madhukar, "Design Consideration and Demonstration 
                          of Resonant-Cavity-Enhanced Quantum Dot Infrared Photodetectors 
                          in Mid-Infrared Wavelength Regime (3-5 micron)." 
                          IEEE J. of Quantum Electronics, 46, 1484 (2010) 
                        
                         2. T. Asano, Z. Fang, and A. Madhukar, "Deep levels 
                          in GaAs(001)/InAs/InGaAs/GaAs self-assembled quantum 
                          dot structures and their effect of quantum dot devides." 
                          J. of Applied Physics, 107, 073111 (2010) 
                    
                          3. T. Asano, A. Madhukar, K. Mahalingham, G.J. Brown, 
                          "Dark current and band profiles in low defect density 
                          thick multilayered GaAs/InAs self-assembled quantum 
                          dot structures fro infrared detectors" J. Appl. 
                          Phys, 104, 113115 (2008) 
                          4 . E. T. Kim, A. Madhukar, Z. 
                          Ye, and J. C. Campbell, "High detectivity InAs 
                          quantum dot infrared photodetectors," Appl. Phys. 
                          Lett. 84, 3277 (2004). 
                          5. A. Madhukar and J. C. Campbell, "Quantum dot 
                          infrared photodetectors," Semiconductor Nanostructures 
                          for Optoelectronic Applications, Ed. T. Steiner, Artech 
                          House, Inc. (Norwood, MA), Chapter 3, (2004). 
                          6. Z. Ye, J. C. Campbell, Z. H. Chen, E. T. Kim, and 
                          A. Madhukar,"Noise and photoconductive gain in 
                          InAs quantum dot infrared photodetectors", App. 
                          Phys. Lett. 83, 1234? (2003) 
                          7. E. T. Kim, Z. H. Chen, M. Ho, and A. Madhukar, Tailoring 
                          mid- and long-wavelength dual response of InAs quantum-dot 
                          infrared photodetectors using InxGa1-xAs capping layers, 
                          J. Vac. Sci. Technol. B 20, 1188 (2002). 
                          8. Z. Ye, J. C. Campbell, Z. H. Chen, E. T. Kim, and 
                          A. Madhukar, Voltage-controllable multi-wavelength InAs 
                          quantum-dot infrared photodetectors for mid- and far-infrared 
                          detection, J. Appl. Phys. 92, 4141 (2002). 
                          9. Z. Ye, J. C. Campbell, Z. Chen, E. T. Kim, and A. 
                          Madhukar, Normal-incidence InAs self-assembled quantum-dot 
                          infrared photodetectors with a high detectivity, IEEE 
                          J. Quantum Electr. 38, 1234? (2002). 
                          10. Q. Xie, A. Kalburge, P. Chen, and A. Madhukar, "Observation 
                          of lasing from vertically self-organized InAs three-dimensional 
                          island quantum boxes on GaAs(001)," IEEE Photonic 
                          Tech. Lett. 8, 965 (1996). 
                          11. K. Kaviani, A. Madhukar, J. J. Brown, and L. E. 
                          Larson, "Realization of doped-channel MISFETs with 
                          high breakdown voltage in AlGaAs/InGaAs based material 
                          system," Electron. Lett. 30, 669 (1994). 
                          12. K. Kaviani, K. Z. Hu, Q. H. Xie, and A. Madhukar, 
                          "Realization of high performance doped channel 
                          MISFETs in highly strained AlGaAs/InGaAs/AlGaAs based 
                          quantum wells," J. of Cryst. Growth 127, 68 (1993). 
                           
                          13. K. Z. Hu, L. Chen, K. Kaviani, P. Chen, and A. Madhukar, 
                          "All optical photonic switches using integrated 
                          inverted asymmetric Fabry-Perot modulators and heterojunction 
                          phototransistors," IEEE Photonic Tech. L. 4, 263 
                          (1992). 
                          14. L. Chen, K. H. Hu, R. M. Kapre, and A. Madhukar, 
                          "High contrast ratio self electro-optic devices 
                          based on inverted InGaAs/GaAs asymmetric Fabry-Perot 
                          modulator," Appl. Phys. Lett. 60, 422 (1992). 
                          15. L. Chen, K. Z. Hu, R. M. Kapre, W. Chen, and A. 
                          Madhukar, "High contrast optically bistable optoelectronic 
                          switches based on InGaAs/GaAs(100) conventional and 
                          inverted asymmetric Fabry-Perot modulators grown via 
                          molecular beam epitaxy," J. Vac. Sci. Technol. 
                          B 10, 1014 (1992). 
                          16. R. M. Kapre, A. Madhukar, and S. Guha, "Highly 
                          strained GaAs/InGaAs/AlAs resonant tunneling diodes 
                          with simultaneously high peak current densities and 
                          peak-to-valley ratios at room temperature," Appl. 
                          Phys. Lett. 58, 2255 (1991). 
                          17. L. Chen, R. M. Kapre, K. Z. Hu, and A. Madhukar, 
                          "High contrast optically bistable optoelectronic 
                          switch based on InGaAs/GaAs(100) asymmetric Fabry-Perot 
                          modulator, detector, and resonant tunneling diode," 
                          Appl. Phys. Lett. 59,1523 (1991). 
                          18. K. Z. Hu, L. Chen, A. Madhukar, P. Chen, C. Kyriakakis, 
                          Z. Karim, and A. R. Tanguay, Jr., "Inverted cavity 
                          GaAs/InGaAs asymmetric Fabry-Perot reflection modulator," 
                          Appl. Phys. Lett. 59, 1664 (1991).  
                          19. N. M. Cho, P. G. Newman, D. J. Kim, A. Madhukar, 
                          D. D. Smith, T. Aucoin, and G. J. Iafrate, "Realization 
                          of high mobility in inverted AlxGa1-xAs/GaAs heterojunctions", 
                          App. Phys. Lett. 52, 2037 (1988). 
                           
                        VII. 
                          Highly Strained Epitaxy: Coherent Islands & Stress 
                          Engineered Quantum Dots 
                         
                          1. M. A. Makeev and A. Madhukar, "Stress relaxation 
                          in lattice-mismatched semiconductor overlayers on patterned 
                          substrates: atomistic simulation studies," Handbook 
                          of Semiconductor Nanostructures and Nanodevices, Eds. 
                          A. A. Balandin and K. L. Wang, Am. Scientific Publishers, 
                          Vol. X, Chapter 7, (2006).  
                          2. M. A. Makeev and A. Madhukar, "Calculation of 
                          vertical correlation probablility in GeSi(001) shallow 
                          island quantum dot multilayer systems," Nano Lett. 
                          6, 1279, (2006). 
                          3. M. A. Makeev, R. K. Kalia, A. Nakano, P. Vashishta, 
                          and A. Madhukar, "Effect of geometry on stress 
                          relaxation in InAs/GaAs rectangular nanomesas: Multimillion-atom 
                          molecular dynamics simulations," J. Appl. Phys. 
                          98, 114313, (2005). 
                          4. M. A. Makeev, W. Yu, and A. Madhukar, "Atomic 
                          scale stresses and strains in Ge/Si(001) nanopixels: 
                          An atomistic simulation study," J. Appl. Phys. 
                          96, 4429 (2004). 
                          5. M. A. Makeev and A. Madhukar, "Stress and strain 
                          fields from an array of spherical inclusions in semi-infinite 
                          elastic media: Ge nanoinclusions in Si," Phys. 
                          Rev. B 67, 073201 (2003). 
                          6. M. A. Makeev, W. Yu, and A. Madhukar, "Stress 
                          distributions and energetics in the laterally ordered 
                          systems of buried pyramidal Ge/Si(001) islands: An atomistic 
                          simulation study," Phys. Rev. B 68, 195301 (2003). 
                          7. X. Su, R. K. Kalia, A. Nakano, P. Vashishta, and 
                          A. Madhukar, "InAs/GaAs square nanomesas: Multimillion-atom 
                          molecular dynamics simulations on parallel computers," 
                          J. Appl. Phys. 94, 6762 (2003). 
                          8. E.T. Kim, Z. Chen, and A. Madhukar, Selective manipulation 
                          of InAs quantum dot electronic states using a lateral 
                          potential confinement layer, Appl. Phys. Lett. 81, 3473 
                          (2002). 
                          9. A. Madhukar, "Stress Engineered Quantum dots: 
                          Nature's Way", in "Nano Optoelctronics: Concepts, 
                          Physics, and Devices", Ed. M. Grundmann, Springer-Verlag, 
                          (Berlin, 2002).  
                          10. M. Makeev and A. Madhukar, "Large-scale atomistic 
                          simulations of atomic displacements, stresses, and strains 
                          in nanoscale mesas: Effect of mesa edges, corners, and 
                          interfaces," Appl. Phys. Lett. 81, 3789 (2002). 
                          11. M. A. Makeev and A. Madhukar, "Simulations 
                          of atomic level stresses in systems of buried Ge/Si 
                          islands", Phys. Rev. Lett. 86, 5542 (2001). 
                          12. I. G. Rosen, T. Parent, C. Cooper, P. Chen, and 
                          A. Madhukar, "A neural network based approach to 
                          determining a robust process recipe for the plasma enhanced 
                          deposition of silicon nitride thin films," IEEE 
                          T. Contr. Syst. T. 9, 271 (2001). 
                          13. B. Fidan, I. G. Rosen, T. Parent, J. Tie, and A. 
                          Madhukar, "Multivariable intelligent control of 
                          CF4/O2 plasma etching of silicon nitride," Proceedings 
                          of 2001 American Control Conference, Arlington, VA, 
                          July 25-27, 2, 1280 (2001). 
                          14. X. T. Su, R. K. Kalia, A. Nakano, P. Vashishta, 
                          and A. Madhukar, "Million-atom molecular dynamics 
                          simulation of flat InAs overlayers with self-limiting 
                          thickness on GaAs square nanomesas," Appl. Phys. 
                          Lett. 78, 3717 (2001). 
                          15. X. T. Su, R. K. Kalia, A. Nakano, P. Vashishta, 
                          and A. Madhukar, "Critical lateral size for stress 
                          domain formation in InAs/GaAs square nanomesas: A multimillion-atom 
                          molecular dynamics study," Appl. Phys. Lett. 79, 
                          4577 (2001). 
                          16. E. T. Kim, Z. H. Chen, and A. Madhukar, Tailoring 
                          detection bands of InAs quantum-dot infrared photo-detectors 
                          using InxGa1-xAs strain-relieving quantum wells, Appl. 
                          Phys. Lett. 79, 3341 (2001). 
                          17. A. Omeltchenko, M. E. Bachlechner, A. Nakano, R. 
                          K. Kalia, P. Vashishta, I. Ebbsjö, A. Madhukar, 
                          and P. Messina, "Stress domains in Si(111)/a-Si3N4 
                          nanopixel: ten-million-atom molecular dynamics simulations 
                          on parallel computers," Phys. Rev. Lett. 84, 318 
                          (2000). 
                          18. M. E. Bachlechner, A. Omeltchenko, A. Nakano, R. 
                          K. Kalia, P. Vashishta, I. Ebbsjö, and A. Madhukar, 
                          "Dislocation emission at the silicon/silicon nitride 
                          interface: a million atom molecular dynamics simulation 
                          on parallel computers," Phys. Rev. Lett. 84, 322 
                          (2000).  
                          19. A. Nakano, M. E. Bachlechner, P. Branicio, T. J. 
                          Campbell, I. Ebbsjö, R. K. Kalia, A. Madhukar, 
                          S. Ogata, A. Omeltchenko, J. P. Rino, F. Shimojo, P. 
                          Walsh, and P. Vashishta, "Large-scale atomistic 
                          modeling of nanoelectronic structures," IEEE T. 
                          Electron. Dev. 47, 1804 (2000). 
                          20. X. Su, R. K. Kalia, A. Madhukar, A. Nakano, and 
                          P. Vashishta, "Multimillion atom simulation of 
                          atomic-level surface stresses on InAs/GaAs nanomesas," 
                          Proc. of MRS Symposium, Fall 1999, 548, 269 (2000). 
                           
                          21. I. Mukhametzhanov, Z. Wei, R. Heitz, and A. Madhukar, 
                          Punctuated island growth: an approach to examination 
                          and control of quantum dot density, size, and shape 
                          evolution, Appl. Phys. Lett. 75, 85 (1999). 
                          22. R. Heitz, I. Mukhametzhanov, O. Stier, A. Madhukar, 
                          and D. Bimberg, "Enhanced polar exciton- LO-phonon 
                          interaction in quantum dots ", Phys. Rev. Lett., 
                          83, 4654 (1999). 
                          23. A. Nakano, M. Bachlechner, T. Campbell, R. Kalia, 
                          A. Omeltchenko, K. Tsuruta, P. Vashishta, S. Ogata, 
                          I. Ebbsjo, A. Madhukar, "Atomistic Simulation of 
                          Nanostructured Materials Using Parallel Multiresolution 
                          Algorithms", IEEE Computational Science & Engineering, 
                          5, 68 (1998).  
                          24. I. Mukhametzhanov, R. Heitz, J. Zeng, P. Chen, and 
                          A. Madhukar, Independent manipulation of density and 
                          size of stress-driven self assembled quantum dots, Appl. 
                          Phys. Lett. 73, 1841 (1998).  
                          25. R. Heitz, I. Mukhametzhanov, P. Chen, and A. Madhukar, 
                          Excitation transfer in self-organized asymmetric quantum-dot 
                          pairs, Phys. Rev. B 58, R10151 (1998). 
                          26. A. Konkar, R. Heitz, T.R. Ramachandran, P. Chen, 
                          and A. Madhukar, "Fabrication of strained InAs 
                          island ensembles on nonplanar patterned GaAs (001) substrates" 
                          J. Vac. Sci. Technol. B 16, 3 (1998);  
                          27. A. Konkar, A. Madhukar, and P. Chen, " Stress-engineered 
                          spatially selective self-assembly of strained InAs quantum 
                          dots on nonplanar patterned GaAs(001) substrates " 
                          App. Phys. Lett., 72, 220 (1998) 
                          28. A. Madhukar, T. R. Ramachandran, A. Konkar, I. Mukhametzhanov, 
                          W. Yu, and P. Chen, "On the atomistic and kinetic 
                          nature of strained epitaxy and formation of coherent 
                          3D island quantum boxes," Appl. Surf. Sci.123/124, 
                          266 (1998). 
                          29. R. Heitz, T.R. Ramachandran, A. Kalburge, Q. Xie, 
                          I. Mukhametzhanov, P. Chen and A. Madhukar, "Observation 
                          of re-entrant 2D to 3D morphology transition in highly 
                          strained epitaxy: InAs on GaAs", Phys. Rev. Lett. 
                          78, 4071 (1997). 
                          30. W. Yu and A. Madhukar, "Molecular dynamics 
                          study of coherent island energetics, stresses, and strains 
                          in highly strained epitaxy", Phys. Rev. Lett. 79, 
                          905 (1997). 
                          31. N. P. Kobayashi, T. R. Ramachandran, P. Chen, and 
                          A. Madhukar, "In-situ, atomic force microscope 
                          studies of the evolution of InAs three-dimensional islands 
                          on GaAs(001)," Appl. Phys. Lett. 68, 3299 (1996). 
                           
                          32. A. Madhukar, "A unified atomistic and kinetic 
                          framework for growth front morphology evolution and 
                          defect initiation in strained epitaxy," J. Cryst. 
                          Growth 163, 149 (1996). 
                          33. W. B. Yu and A. Madhukar, "Molecular dynamics 
                          studies of surface stress in (2 x N) Gen/Si(001)," 
                          Proceedings of the 23rd Int. Conf. on the Physics of 
                          Semiconductors, (Berlin, Germany, 1996) Eds. M. Scheffler 
                          and R. Zimmermann, World Scientific, Singapore, 971 
                          (1996). 
                          34. W. Yu and A. Madhukar, "Molecular dynamics 
                          studies of the stress distribution in strained semiconductor 
                          nanostructures," Proceedings of the 23rd Int. Conf. 
                          on the Physics of Semiconductors, (Berlin, Germany, 
                          1996), Eds. M. Scheffler and R. Zimmermann, World Scientific, 
                          Singapore, 1309 (1996). 
                          35. A. Madhukar, " Semiconductor Nanostructures: 
                          Nature's Way ", in " Low dimensional systems 
                          prepared by epitaxial growth or regrowth on patterned 
                          substrates" NATO ASI Proceedings, Eds. K. Eberl, 
                          P. Demeester, and P. Petroff, (Kluwer Scientific, The 
                          Netherlands, 1995), p. 19-33. 
                          36. Q. Xie, A. Madhukar, P. Chen, N. Kobayashi, "Vertically 
                          Self-Organized InAs quantum box islands on GaAs(100)", 
                          Phys. Rev. Lett. 75, 2542 (1995) HIGHLY 
                          CITED 
                          37. A. Madhukar, Q. Xie, P. Chen, and A. Konkar, "Nature 
                          of strained InAs 3-dimensional island formation and 
                          distribution on GaAs(100)," Appl. Phys. Lett. 64, 
                          2727 (1994). 
                          38. S. Guha, A. Madhukar, and K.C. Rajkumar, "Onset 
                          of incoherency and defect introduction in the initial 
                          stages of molecular beam epitaxical growth of highly 
                          strained InxGa1-xAs on GaAs(100), Appl. Phys. Lett. 
                          57, 2110 (1990) HIGHLY 
                          CITED 
                          39. S. J. Sun, Y. C. Chang, and A. Madhukar, "Effects 
                          of geometry and strain on the electronic properties 
                          of InAs/GaAs self-assembled quantum dots," Phys. 
                          Rev. B (To be published). 
                          40. M. A. Makeev, R. K. Kalia, A. Nakano, P. Vashishta, 
                          and A. Madhukar, "Stress field from a pyramidal 
                          InAs island in GaAs: Multimillion-atom molecular dynamics 
                          simulation study," Phys. Rev. B (Submitted). 
                          
                          
                        VIII. 
                          Lattice-Matched Growth on Patterned Substrates: 
                          Engineered Stress Induced  
                          Assembly of Nanostructures (ESIAN) 
                         
                          1. A. Madhukar, K. C. Rajkumar, and P. Chen, "In-situ 
                          approach to realization of three-dimensionally confined 
                          structures via substrate encoded size reducing epitaxy 
                          on nonplanar patterned substrates," Appl. Phys. 
                          Lett. 62, 1547 (1993). 
                          2. K. C. Rajkumar, K. Kaviani, P. Chen, A. Madhukar, 
                          K. Rammohan, and D. H. Rich, "One step in-situ 
                          quantum dots via molecular beam epitaxy," J. Cryst. 
                          Growth 127, 863 (1993). 
                          3. S. Guha and A. Madhukar, "An explanation for 
                          the directionality of interfacet migration during molecular 
                          beam epitaxical growth on patterned substrates," 
                          J. Appl. Phys. 73, 8662 (1993). 
                          4. K. C. Rajkumar, A. Madhukar, K. Rammohan, D. H. Rich, 
                          P. Chen, and L. Chen, "Optically active 3-dimensionally 
                          confined structures realized via molecular beam epitaxical 
                          growth on nonplanar GaAs(111)B," Appl. Phys. Lett. 
                          63, 2905 (1993). 
                          5. A. Madhukar, "Growth of semiconductor heterostructures 
                          on patterned substrates: defect reduction and nanostructure 
                          synthesis," Thin Solid Films 231, 8 (1993) 
                          6. S. Guha, A. Madhukar, K. Kaviani, L. Chen, R. Kuchibhotla, 
                          R. Kapre, M. Hyugaji and S. Xie, "Molecular beam 
                          epitaxical growth of AlxGa1-xAs on non-planar patterned 
                          GaAs (001)," Proceedings of the MRS Symposium on 
                          III-V Heterostructures for Electronic/Photonic Devices, 
                          145, 27 (1989). 
                          
                          
                        IX. 
                          Strained Epitaxy: Defect Reduction via Growth on 
                          Patterned Substrates 
                           
                          1. S. Guha, A. Madhukar, and Li Chen, "Defect reduction 
                          in strained InxGa1-xAs via growth on GaAs(100) substrates 
                          patterned to submicron dimensions," Appl. Phys. 
                          Letts. 56, 2304 (1990). 
                          2. S. Guha, A. Madhukar, L. Chen, K. C. Rajkumar, and 
                          R. Kapre, "Interfacet migration and defect formation 
                          in heteroepitaxy on patterned substrates: AlGaAs and 
                          InGaAs on GaAs(100) in MBE," SPIE Proceedings on 
                          Growth of Semiconductor Structures and High TC Superconductors, 
                          Ed. A. Madhukar, Thin Films on Semiconductors, 1285, 
                          160 (1990). 
                          3. R. Kapre, A. Madhukar, and S. Guha, "In0.25Ga0.75As/AlAs 
                          based resonant tunneling diodes grown on pre patterned 
                          and non patterned GaAs(100) substrates," IEEE Electr. 
                          Device L. 11, 270 (1990). 
                          4. A. Madhukar, K. C. Rajkumar, L. Chen, S. Guha, K. 
                          Kaviani, and R. Kapre, "Realization of low defect 
                          density, ultra thick, strained InGaAs/GaAs multiple 
                          quantum well structures via growth on patterned GaAs(100) 
                          substrates," App. Phys. Letts. 57, 2007 (1990). 
                          5. S. Guha, A. Madhukar, K. Kaviani, and R. Kapre, "Growth 
                          of InxGa1-xAs on patterned GaAs(100) substrates," 
                          J. Vac. Sci. Technol. B 8, 149 (1990). 
                          
                           
                         X. 
                          Molecular Beam Epitaxy, Growth Kinetics, Surface 
                          Chemical Reactions, & Long Range Order in Alloys 
                           
                           
                          1. R. Viswanathan, A. Madhukar, and S. B. Ogale, "Role 
                          of step orientation and step-step interaction in the 
                          in-situ creation of laterally confined semiconductor 
                          nanostructures via growth: a simulated annealing study 
                          on a parallel computing platform," J. Cryst. Growth 
                          150, 190 (1995). 
                          2. A. Madhukar, W. Yu, R. Viswanathan, and P. Chen, 
                          "Some computer simulations of semiconductor thin 
                          film growth and strain relaxation in a unified atomistic 
                          and kinetic model," MRS Symposium Proc. 408, 413 
                          (1995). 
                          3. S. B. Ogale and A. Madhukar, "Adatom processes 
                          near step edges and evolution of long range order in 
                          semiconductor alloys grown from vapor phase," Appl. 
                          Phys. Lett. 60, 2095 (1992). 
                          4. R. Viswanathan, J. Seshadri, S. Joshi, S. B. Ogale, 
                          V. C. Bhavsar, and A. Madhukar, "Molecular dynamics 
                          simulation of semiconductor surfaces on a transputer 
                          array-a performance analysis," Extended Abstract, 
                          Supercomputing Symposium (June 3-5, 1991, Canada), (1991). 
                          5. S. B. Ogale and A. Madhukar, "Surface relaxation 
                          controlled mechanism for occurrence of long range ordering 
                          in III-V semiconductor alloys grown by molecular beam 
                          epitaxy," Appl. Phys. Lett. 59, 1356 (1991). 
                          6. R. Viswanathan, S. Thube, S. B. Ogale, V. C. Bhavsar, 
                          and A. Madhukar, "Parallel implementations of simulated 
                          annealing for semiconductor surface relaxations on multi-transputer 
                          systems," Frontiers in Parallel Computing, Eds. 
                          V. Bhatkar, A. Basu, S. C. Purohit, and K. M. Rege, 
                          Narosa Publishing House, India, 311 (1990).  
                          7. S. V. Ghaisas and A. Madhukar, "Nature of the 
                          oscillatory surface smoothness and its consequences 
                          during molecular beam epitaxy of strained layers: a 
                          computer simulation study," J. Appl. Phys. 65, 
                          1888 (1989). 
                          8. S. V. Ghaisas and A. Madhukar, "Surface kinetics 
                          and growth interruption in molecular beam epitaxy of 
                          compound semiconductors: a computer simulation study," 
                          J. Appl. Phys. 65, 3872 (1989). 
                          9. S. V. Ghaisas and A. Madhukar, "Kinetic aspects 
                          of growth front surface morphology and defect formation 
                          during molecular beam epitaxy growth of strained thin 
                          films," J. Vac. Sci. Technol. B 7, 264 (1989). 
                           
                          10. S. B. Ogale and A. Madhukar, "Low energy ion 
                          beam effects on the molecular beam expitaxical growth 
                          of III-V compound semiconductors: a Monte Carlo simulation 
                          study," Appl. Phys. Lett. 55, 1115 (1989). 
                          11. A. Madhukar and S. V. Ghaisas, "The nature 
                          of molecular beam epitaxial growth examined via computer 
                          simulations," CRC Critical Reviews in Solid State 
                          and Materials Sciences 14, 1 (1988). 
                          12. S. V. Ghaisas and A. Madhukar, "Computer simulations 
                          of the role of surface reconstruction, stoichiometry 
                          and strain in molecular beam epitaxical growth," 
                          Proceedings of the SPIE Symposium on Growth of Advanced 
                          Semiconductor Structures, Ed. A. Madhukar, 944, 16 (1988). 
                          13. S. V. Ghaisas and A. Madhukar, "Influence of 
                          compressive and tensile strain on growth mode during 
                          epitaxical growth: a computer simulation study," 
                          App. Phys. Lett. 53, 1599 (1988). 
                          14. M. Thomsen and A. Madhukar, "Computer simulations 
                          of the role of group V molecular reactions at steps 
                          during the molecular beam epitaxial growth of III-V 
                          semiconductors," J. Cryst. Growth 80, 275 (1987). 
                           
                          15. M. Thomsen, S. V. Ghaisas, and A. Madhukar, "Examination 
                          of the nature of lattice matched III-V semiconductor 
                          interfaces using computer simulated molecular beam epitaxial 
                          growth; I. AC/BC interfaces," J. Cryst. Growth 
                          84, 79 (1987). 
                          16. M. Thomsen and A. Madhukar, "Examination of 
                          the nature of lattice matched III-V semiconductor interfaces 
                          using computer simulated molecular beam epitaxial growth 
                          AxB1-xC/BC interfaces, " J. Cryst. Growth 84, 98 
                          (1987). 
                          17. S. B. Ogale, M. Thomsen, and A. Madhukar, "Role 
                          of surface reconstruction and external ion beam in the 
                          growth kinetics of III-V molecular beam epitaxy," 
                          Proceedings of MRS Spring Symposium, 94, 83 (1987). 
                          18. M. Y. Yen, A. Madhukar, B. F. Lewis, R. Fernandez, 
                          L. Eng, and F. J. Grunthaner, "Cross-sectional 
                          transmission electron microscope studies of GaAs/InAs(100) 
                          strain layer modulated structures grown by molecular 
                          beam epitaxy," Surf. Science 174, 606 (1986).  
                          19. P. Chen, A. Madhukar, J. Y. Kim, and T. C. Lee, 
                          "Existence of metastable step density distributions 
                          on GaAs(100) surfaces and their consequences for molecular 
                          beam epitaxial growth," Appl. Phys. Lett. 48, 650 
                          (1986).  
                          20. F. Voillot, A. Madhukar, J. Y. Kim, P. Chen, N. 
                          M. Cho, W. C. Tang, and P. G. Newman, "Observation 
                          of kinetically controlled monolayer step height distribution 
                          at normal and inverted interfaces in ultrathin GaAs/AlxGa1-xAs 
                          quantum wells," Appl. Phys. Lett. 48, 1009 (1986). 
                           
                          21. B. F Lewis, R. F. Fernandez, A. Madhukar, and F. 
                          J. Grunthaner, "Arsenic-induced intensity oscillations 
                          in reflection high-energy electron diffraction measurements," 
                          J. Vac. Sci. Technol. B 4, 560 (1986).  
                          22. S. V. Ghaisas and A. Madhukar, "Role of surface 
                          molecular reactions in influencing the growth mechanism 
                          and the nature of non-equilibrium surfaces: a Monte-Carlo 
                          study of molecular beam epitaxy," Phys. Rev. Lett. 
                          56, 1066 (1986).  
                          23. M. Y. Yen, T. C. Lee, P. Chen, and A. Madhukar, 
                          "Kinetics of the formation of normal and inverted 
                          molecular beam epitaxial interfaces: a reflection high-energy 
                          electron diffraction dynamics study of GaAs/AlxGa1-xAs(100) 
                          multiple quantum wells," J. Vac. Sci. Technol. 
                          B 4, 590 (1986).  
                          24. T. C. Lee, M. Y. Yen, P. Chen, and A. Madhukar, 
                          "Kinetic processes in molecular beam epitaxy of 
                          GaAs(100) and AlAs(100) examined via static and dynamic 
                          behaviour of RHEED intensities," J. Vac. Sci. Tech. 
                          A 4, 884 (1986).  
                          25. P. Chen, J. Y. Kim, A. Madhukar, and N. M. Cho, 
                          "Optimal surface and growth front of III-V semiconductors 
                          in MBE: a study of kinetic processes via RHEED specular 
                          beam intensity measurement on GaAs(100)," J. Vac. 
                          Sci. Tech. B 4, 890 (1986).  
                          26. T. C. Lee, M. Y. Yen, P. Chen, and A. Madhukar, 
                          "The temporal behavior of RHEED intensity and implications 
                          for growth kinetics during MBE growth of GaAs/AlxGa1-xAs(100) 
                          modulated structures," Surf. Science 174, 55 (1986). 
                           
                          27. F. J. Grunthaner, M. Y. Yen, A. Madhukar, R. Fernandez, 
                          T. C. Lee, and B. F. Lewis, "Molecular beam epitaxial 
                          growth of GaAs/InAs multiple interface structures," 
                          App. Phys. Letts. 46, 983 (1985).  
                          28. S. V. Ghaisas and A. Madhukar, "Monte-Carlo 
                          simulations of MBE growth of III-V semiconductors: the 
                          growth kinetics, mechanisms and consequences for the 
                          dynamics of RHEED intensity," J. Vac. Sc. Tech. 
                          B3, 540 (1985).  
                          29. A. Madhukar and S. V. Ghaisas, "Implications 
                          of the configuration-dependent-reactive-incorporation 
                          growth process for the group V pressure and substrate 
                          temperature dependence of III-V molecular beam epitaxial 
                          growth and the dynamics of the reflection high energy 
                          electron diffraction intensity," Appl. Phys. Letts. 
                          47, 247 (1985).  
                          30. A. Madhukar, T. C. Lee, M. Y. Yen, P. Chen, J. Y. 
                          Kim, S. V. Ghaisas, and P. G. Newman, "Role of 
                          surface kinetics and interrupted growth during molecular 
                          beam epitaxial growth of normal and inverted GaAs/AlGaAs(100) 
                          interfaces: a reflection high energy electron diffraction 
                          intensity dynamics study," Appl. Phys. Lett. 46, 
                          1148 (1985).  
                          31. B. F. Lewis, F. J. Grunthaner, A. Madhukar, T. C. 
                          Lee, and R. Fernandez, "RHEED intensity behaviour 
                          during MBE growth of GaAs(100) and implications for 
                          growth kinetics and mechanisms," J. Vac. Sci. Tech. 
                          B3, 1317 (1985).  
                          32. B. F. Lewis, T. C. Lee, F. J. Grunthaner, A. Madhukar, 
                          R. Fernandez, and J. Maserjian, "RHEED oscillation 
                          studies of kinetics and lattice mismatch strain-induced 
                          effects during InGaAs growth on GaAs(100)," J. 
                          Vac. Sci. Tech. B2, 419 (1984).  
                          33. A. Madhukar, "Far from equilibrium vapor phase 
                          growth of lattice matched III-V compound semiconductor 
                          interfaces: some basic concepts and Monte-Carlo computer 
                          simulations," Surface Science 132, 344 (1983). 
                           
                          34. J. Singh and A. Madhukar, "Prediction of a 
                          kinetically controlled surface roughening: a Monte-Carlo 
                          computer simulation study," Phys. Rev. Lett. 51, 
                          794 (1983).  
                          35. J. Singh and A. Madhukar, "Surface orientation 
                          dependent surface kinetics and interface roughening 
                          in molecular beam epitaxial growth of III-V semiconductors: 
                          a Monte-Carlo study," J. Vac. Sci. Tech. B 1, 305 
                          (1983).  
                           
                           
                           
                        XI. 
                          Disordered Systems (Low Dimensional and Interfacial) 
                           
                          1. J. Singh and A. Madhukar, "A derivation for 
                          the energy dependence of the density of band tail states 
                          in disordered materials," Solid State Comm. 41, 
                          241 (1982).  
                          2. J. Singh and A. Madhukar, "A new method for 
                          calculating non-ideal point defect induced electronic 
                          structure: applications to GaAs1-xPx:O," Solid 
                          State Commun. 41, 947 (1982).  
                          3. J. Singh and A. Madhukar, "Method for calculating 
                          electronic structure induced by short ranged defects 
                          in semiconductors," Phys. Rev. B 25, 7700 (1982). 
                           
                          4. J. Singh and A. Madhukar, "The origin and nature 
                          of Si band gap states at the Si/SiO2 interface," 
                          App. Phys. Lett. 38, 884 (1981).  
                          5. J. Singh and A. Madhukar, "Origin of U-shaped 
                          background density of interface states at non lattice 
                          matched semiconductor interfaces," J. Vac. Sci. 
                          Technol. 19, 437 (1981).  
                          6. F. J. Grunthaner, P. J. Grunthaner, R. P. Vasquez, 
                          B. F. Lewis, J. Maserjian, and A. Madhukar, "High 
                          resolution XPS as a probe of local atomic structure: 
                          application to amorphous SiO2 and the Si/SiO2 interface," 
                          Phys. Rev. Lett. 43, 1683 (1979). HIGHLY 
                          CITED 
                          7. A. Madhukar and M. H. Cohen, "Ideal resistivity 
                          in one dimension," Phys. Rev. Lett. 38, 85 (1977). 
                           
                          8. A. Madhukar and W. Post, "Exact solution for 
                          the diffusion of a particle in a medium with site diagonal 
                          and off-diagonal dynamic disorder," Phys. Rev. 
                          Lett. 39, 1424 (1977).  
                          
                          
                        XII. 
                          Two Dimensional Systems 
                           
                          XII.A Electron Transport, Electron-Phonon 
                          Interaction, Coupled Plasmons 
                        1. S. B. Ogale, A. Madhukar, 
                          and N. M. Cho, "Influence of transverse electric 
                          field on the photoluminescence linewidth of excitonic 
                          transition in quantum wells: alloy disorder and composition 
                          fluctuation contributions," J. Appl. Phys. 62, 
                          1381 (1987). 
                          2. S. B. Ogale, A. Madhukar, F. Voillot, M. Thomsen, 
                          W. C. Tang, T. C. Lee, J. Y. Kim, and P. Chen, "Atomistic 
                          nature of heterointerfaces in III-V semiconductor-based 
                          quantum-well structures and its consequences for photoluminescence 
                          behavior," Phys. Rev. B 36, 1662 (1987). 
                          3. A. Madhukar, P. D. Lao, W. C. Tang, M. Aidan, and 
                          F. Voillot, "Observation of phonon modes through 
                          resonant mixing with electronic states in the secondary 
                          emission spectra of GaAs/Al0.32Ga0.68As single quantum 
                          well," Phys. Rev. Lett. 59, 1313 (1987). 
                          4. S. B. Ogale and A. Madhukar, "Quantum size effect 
                          in the transport of electrons in semiconductor quantum 
                          well structures," J. App. Phys. 55, 483 (1984). 
                           
                          5. S. B. Ogale and A. Madhukar, "Alloy disorder 
                          scattering contribution to low temperature electron 
                          mobility in semiconductor quantum well structures," 
                          J. App. Phys. 56, 368 (1984).  
                          6. M. Grabowski and A. Madhukar, "Theory of the 
                          transverse static magnetoconductivity in a two-dimensional 
                          electron-phonon system," Solid State Commun. 41, 
                          29 (1982).  
                          7. M. Grabowski and A. Madhukar, "Quantum theory 
                          of magnetotransport in two dimensional systems with 
                          electron-impurity, electron-phonon and electron-electron 
                          interactions," Surf. Sc. 113, 273 (1982).  
                          8. B. Horovitz, M. Grabowski, and A. Madhukar, "A 
                          theory of cyclotron resonance in a two dimensional quantum 
                          Wigner crystal," Surf. Sc. 113, 318 (1982).  
                          9. S. Das Sarma and A. Madhukar, "Collective modes 
                          of spatially separated, two-component, two-dimensional 
                          plasma in solids," Phys. Rev. B 23, 805 (1981). 
                          10. S. Das Sarma and A. Madhukar, "Formation of 
                          an anomalous acoustic plasmon in spatially separated 
                          charged plasmas," Surf. Sci. 98, 563 (1980).  
                          11. S. Das Sarma and A. Madhukar, "Study of the 
                          electron-phonon interactions and magneto-optical anomalies 
                          in two dimensionally confined systems," Phys. Rev. 
                          B 22, 2823 (1980).  
                          12. N. V. Dandekar, A. Madhukar, and D. N. Lowy, "Study 
                          of the electronic structure of model (110) surfaces 
                          and interfaces of semi-infinite III-V compound semiconductors: 
                          the GaSb/InAs system," Phys. Rev. B 21, 5687 (1980). 
                           
                          13. A. Madhukar and S. Das Sarma, "Intrinsic and 
                          extrinsic interface states at the lattice matched interfaces 
                          between III-V compound semiconductors: the InAs/GaSb 
                          (110) system," J. Vac. Sci. Technol. 17, 1120 (1980). 
                          14. A. Madhukar and S. Das Sarma, "Electron-phonon 
                          coupling and resonant magneto-phonon effect in optical 
                          behavior of two-dimensionally confined charge carriers," 
                          Surf. Sci. 98, 135 (1980).  
                          15. B. Horowitz and A. Madhukar, "Electron-phonon 
                          interaction and cyclotron resonance in two dimensional 
                          electron gas," Solid State Commun. 32, 695 (1979). 
                           
                           
                           
                           
                        XII.B 
                          Electronic Structure 
                           
                          1. J. Y. Kim and A. Madhukar, "Electronic structure 
                          of GaP/AlP (100) superlattices," J. Vac. Sci. Tech. 
                          21, 528 (1982).  
                          2. A. Madhukar and J. Delgado, "The electronic 
                          structure of Si/GaP (110) interface and superlattices," 
                          Solid State Commun. 37, 199 (1981).  
                          3. S. Das Sarma and A. Madhukar, "Cation and anion 
                          ideal vacancy induced neutral deep levels in III-V compound 
                          semiconductors," Solid State Comm. 38, 183 (1981). 
                           
                          4. S. Das Sarma and A. Madhukar, "Study of the 
                          ideal-vacancy-induced neutral deep levels in III-V compound 
                          semiconductors and their ternary alloys," Phys. 
                          Rev. B 24, 2051 (1981).  
                          5. S. Das Sarma and A. Madhukar, "Ideal vacancy 
                          induced band gap levels in lattice matched thin superlattices: 
                          the GaAs/AlAs (100) and InAs/GaSb (100) systems", 
                          J. Vac. Sci. Technol. 19, 447 (1981).  
                          6. N. V. Dandekar, A. Madhukar, and D. N. Lowy, "Study 
                          of the electronic structure of model (110) surfaces 
                          and interfaces of semi-infinite III-V compound semiconductors: 
                          the GaSb/InAs system," Phys. Rev. B 21, 5687 (1980). 
                           
                          7. R. N. Nucho and A. Madhukar, "Electronic structure 
                          of SiO2 -quartz and the influence of local disorder," 
                          Phys. Rev. B 21, 1576 (1980).  
                          8. A. Madhukar and R. N. Nucho, "The electronic 
                          structure of InAs/GaSb(001) superlattices: two dimensional 
                          effects," Solid State Commun. 32, 331 (1979).  
                          9. N. V. Dandekar, A. Madhukar, and D. N. Lowy, "Electronic 
                          structure of semi-infinite III-V compound semiconductor 
                          surfaces and interfaces: application to InAs/GaSb(110)," 
                          J. Vac. Sci. Technol. 16, 1364 (1979).  
                          10. D. N. Lowy and A. Madhukar, "Study of the interface 
                          electronic structure of a model metal-semiconductor 
                          interface," Phys. Rev. B 17, 3832 (1978).  
                          11. R. N. Nucho and A. Madhukar, "Tight binding 
                          study of the electronic structure of the InAs/GaSb(001) 
                          superlattice," J. Vac. Sci. Technol. 15, 1530 (1978). 
                           
                          12. R. N. Nucho and A. Madhukar, "Electronic structure 
                          of -quartz and the influence of some local disorder: 
                          a tight binding study," Proceedings of the International 
                          Topical Conference on the Physics of SiO2 and its Interfaces 
                          (March 1978), Ed. S. T. Pantelides, Pergamon Press, 
                          60 (1978).  
                           
                           
                          
                         XIII. 
                          Transport in One Dimension (Organic conductors, 
                          Molecular Solids) 
                        1. 
                          M. Ratner and A. Madhukar, "The role of nuclear 
                          motion in electron and excitation transfer rates," 
                          Chemical Physics 30, 201 (1978) 
                          2. A. Madhukar and M. H. Cohen, "Ideal resistivity 
                          in one dimension," Phys. Rev. Lett. 38, 85 (1977). 
                           
                          149. A. Madhukar and W. Post, "Exact solution for 
                          the diffusion of a particle in a medium with site diagonal 
                          and off-diagonal dynamic disorder," Phys. Rev. 
                          Lett. 39, 1424 (1977).  
                          3. A. Madhukar, "Theory of Peierls instability 
                          in quasi one-dimensional solids," Solid State Commun. 
                          15, 921 (1974).  
                          4. A. Madhukar, "Dimerisation and charge ordering 
                          in linear chain organic conductors," Chem. Phys. 
                          Lett. 27, 606 (1974).  
                           
                           
                          
                        XIV. 
                          Surface Science 
                           
                        1. M. Thomsen and A. Madhukar, 
                          "Classical description of laser-induced desorption 
                          rates," Phys. Rev. B II-35, 8131 (1987). 
                          2. A. Madhukar, "Bonding on solid surfaces and 
                          the existence of Pauling-type functional relationships," 
                          Bull. Am. Phys. Soc. 21, 304 (1976).  
                          3. B. Bell and A. Madhukar, "Theory of chemisorption 
                          on metallic surfaces: role of intra-adsorbate Coulomb 
                          correlations and surface structure," Phys. Rev. 
                          B 14, 4281 (1976).  
                          4. A. Madhukar, "Chemisorption bonding and bond 
                          lengths on transition metal surfaces: effect of coordination 
                          and valency saturation," Solid State Commun. 16, 
                          461 (1975). 
                          5. A. Madhukar and B. Bell, "Chemisorption on transition 
                          metal surfaces: screening and polarization versus the 
                          intra-adsorbate Coulomb interaction," Phys. Rev. 
                          Lett. 34, 1631 (1975). 
                          6. A. Madhukar, "Chemisorption on transition metal 
                          surfaces: electronic structure," Phys. Rev. B 8, 
                          4458 (1973).  
                           
                         
                          XV. Magnetism 
                         
                          1. A. Madhukar and R. Hasegawa, "Mechanism for 
                          resistivity minimum in amorphous ferromagnets," 
                          Solid State Commun. 14, 61 (1974). 
                          2. A. Madhukar, "Indirect exchange mechanism of 
                          magnetic ordering in amorphous alloys," Journal 
                          de Physique, Tome 35, C4-295 (1974). 
                          3. A. Madhukar and R. Hasegawa, "Resistivity minimum 
                          in amorphous ferromagnets," Journal de Physique, 
                          Tome 35, C4-291 (1974). 
                          4. A. Madhukar, "Theory of s-d exchange interaction 
                          in dilute magnetic alloys: formalism," Phys. Rev. 
                          B 7, 1116 (1973).  
                          5. A. Madhukar, "Magnetic ordering versus lattice 
                          distortion in very narrow bands," Solid State Commun. 
                          13, 1767 (1973).  
                          
                         
                           
                        
                        
                      
  |